Energy dependent potential problems for the one dimensional p-Laplacian operator

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

RESONANCE PROBLEMS FOR THE ONE-DIMENSIONAL p-LAPLACIAN

We consider resonance problems for the one dimensional p-Laplacian, and prove the existence of solutions assuming a standard LandesmanLazer condition. Our proofs use variational techniques to characterize the eigenvalues, and then to establish the solvability of the given boundary value problem.

متن کامل

STRONG RESONANCE PROBLEMS FOR THE ONE-DIMENSIONAL p-LAPLACIAN

We study the existence of the weak solution of the nonlinear boundary-value problem −(|u′|p−2u′)′ = λ|u|p−2u+ g(u)− h(x) in (0, π), u(0) = u(π) = 0 , where p and λ are real numbers, p > 1, h ∈ Lp (0, π) (p′ = p p−1 ) and the nonlinearity g : R → R is a continuous function of the Landesman-Lazer type. Our sufficiency conditions generalize the results published previously about the solvability of...

متن کامل

LOWER BOUNDS FOR EIGENVALUES OF THE ONE-DIMENSIONAL p-LAPLACIAN

We also prove that the lower bound is sharp. Eigenvalue problems for quasilinear operators of p-Laplace type like (1.1) have received considerable attention in the last years (see, e.g., [1, 2, 3, 5, 8, 13]). The asymptotic behavior of eigenvalues was obtained in [6, 7]. Lyapunov inequalities have proved to be useful tools in the study of qualitative nature of solutions of ordinary linear diffe...

متن کامل

Existence of a positive solution for one-dimensional singular p-Laplacian problems and its parameter dependence

Article history: Received 1 October 2013 Available online 21 November 2013 Submitted by J. Shi

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Nonlinear Analysis: Real World Applications

سال: 2019

ISSN: 1468-1218

DOI: 10.1016/j.nonrwa.2018.07.001